Applied Physics

Course Code	19BS1204	Year	Ι	Semester	Π
Course Category	Basic Sciences	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Estimate forces and moments in mechanical systems using scalar and vector					
	techniques.					
CO2	Apply the concepts of strain, internal force, stress and equilibrium to deformation of					
	solids.					
CO3	Explain the fundamental theory for the analysis of heat transfer processes in solids					
	and liquids and to apply basic principles of heat transfer in design of refrigerators					
	and heaters.					
CO4	Describe the fundamental principles of acoustics with emphasis on physical					
	mechanisms, law and relationships.					
CO5	Outline the basic principle and operation of different types of <i>sensors</i> .					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н											Н	
CO2	Н	Н											Н	
CO3	Н	Н											Н	
CO4	Н	Н											Н	
CO5	Н	Н											Н	

	Syllabus				
Unit	Contents	Mapped			
I	Mechanics Basic laws of vectors and scalars; Rotational frames; Conservative and non-conservative forces; $F = -$ grad V; Central forces; Elliptical, parabolic	C01			
	acceleration; Harmonic oscillator; Damped harmonic motion; Forced oscillations and resonance. Degrees of freedom.				
Π	Elasticity Concepts of elasticity and plasticity, stress and strain, Hooke's law, different moduli of elasticity, Poisson's ratio, strain energy, stress-strain diagram, elastic behavior of a material, factors affecting elasticity, relation between different moduli of elasticity, determination of elastic moduli	CO2			
III	Thermal Properties	CO3			

	Transfer of heat energy; Thermal expansion of solids and liquids; Expansion joints - bimetallic strips;Thermal conduction, convection and radiation and their fundamental laws; Heat conductions in solids; Thermal conductivity - Forbe's and Lee's disc method: theory and experiment; Applications (qualitative only): heat exchangers, refrigerators, ovens and solar water heaters.	
IV	Acoustics Characteristics of sound waves; Weber-Fechner Law; Absorption coefficient, determination of absorption coefficient; Reverberation time; Sabine's formula, derivation of Sabine's formula using growth and decay method; Intensity of sound; Acoustics of Buildings, Acoustic requirements of a good auditorium.	CO4
V	Sensors Sensors (qualitative description only); Different types of sensors and applications; Strain and pressure sensors - Piezoelectric, magneto strictive sensors; Fibre optic methods of pressure sensing; Temperature sensor - bimetallic strip, pyroelectric detectors; Hall-effect sensor; Smoke and fire detectors.	CO5

Learning ResourcesText Books1. D. Kleppner and Robert Kolenkow "An Introduction to Mechanics– II" Cambridge
University Press, 2015.2. A Textbook of Engineering Physics, Volume-I By M.N. Avadhanulu& T.V.S. Arun
Murthy S Chand.3. Ian R Sinclair, Sensor and Transducers 3/e, 2001, Elsevier (Newnes)Reference Books1. M K Varma "Introduction to Mechanics"-Universities Press,2015.2. PrithwirajPurkait, BudhadityaBiswas and ChiranjibKoley, Chapter 11 Sensors and

Transducers, Electrical and Electronics Measurements and Instrumentation, 1/e., 2013 McGraw Hill Education (India) Private Limited, 2013.

e- Resources & other digital material

http://nptel.ac.in/courses.phphttp://jntuk-coeer http://freevideolectures.com/Course/3048/Physics-of-Materials/36